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Abstract The spectra of quasiperiodically modulated quantum king chains are investi- 
gated. For moderate values of the modulation strength a unified approach, based on the 
lifting of the degeneracy between the len- and right-moving eigenmodes, is proposed. 
The local scaling behaviour rcflecting partial restoration of translational invariance is 
established. Both the conformally invariant =ling for the lower modes and the multi- 
ftacbl scaling for the higher ones are described in terms of the same quantity. A simple 
but a m r a t e  calculational scheme is constructed, where the reanangement in the level 
spectra is due to the interaction behveen left- and right-moving modes of the periodic 
system as induced by the quasiperiodic modulation. 

1. Introduction 

The effect of quasiperiodic modulations of the nearest-neighbour interaction in ID 
quantum ferromagnetic Ising models on the onset of the magnetic long-range order 
has attracted considerable interest (see Doria and Satija 1988, Benza 1989, Satija and 
Doria 1988, You er a1 1991). The common approach consists of analysing the equiva- 
lent one-fermion spectrum (Lieb et al 1961) on a sequence of periodic approximants, 
with increasing sizes of the infinite quasiperiodic Fibonacci chain. 

The band structure of the allowed eigenvalues can be explored using a transfer 
matrix technique. This technique was used to find the criterion for the existence of 
a zero mode in the fermion spectrum, which is the signature for criticality (Benza 
1989). For generalized models, the same analysis was performed by Benza et a1 
(1990) and You er al (1991). The linearization of the map (depending on hvo- 
parameters) realized by the trace of the transfer matrix around its two possible limit 
cycles yielded two typical scaling dimensions, which span the support of the scaling 
dimensions appearing in the one-fermion spectrum (Benza and Callegaro 1990). The 
value U = 1 of the thermal correlation length critical exponent and the logarithmic 
divergence of the specific heat led to the conclusion (Doria and Satija 1988, Benza 
1989, Igl6i 1988) that the magnetic transition is in the ZD king universality class. 

The approach based on the band structure fits well to a multifractal analysis 
(Halsey et al 1986) of the band widths in full analogy with the procedure used 
to analyse the localization phenomena occuring in the one-dimensional Schrbdinger 
equation with a quasiperiodic potential (Kohmoto er al 1987). The most natural 
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question to be asked is whether the magnetic phase transition is accompanied by 
some characteristic change in the features of the one-fermion eigenmodes (Satija and 
Doria 1989, Satija 1990, You et a1 1991). No universal answer could be obtained 
so far. The change in the spectral features of the eigenfunctions seems to depend 
sensitively on the details of the quasiperiodic modulation. 

In this paper, we want to investigate the compatibility of the multifractal nature of 
the one-fermion levels with the consequences of conformal invariance at the critical 
point of the system. The main motivations to our study are as follows. 

First, it is part of the complete universality classification of a second-order phase 
transition, since all anomalous dimensions of a critical ZD spin system with a static 
and isotropic RG fiied point are completely described by the representation theory 
of the conformal group. They can be obtained from the lower part of the excitation 
spectrum by standard methods (for a review, see e.g. Henkel 1990). However, there 
are modifications of the perfect, i.e. unmodulated, Ising model which retain the critical 
exponent values U = 1 and a = 0 and yet do not belong to the king universality 
class. These models are obtained from a different realization of conformal invariance 
(Henkel and Patk6s 1987) or may even display strongly anisotropic scaling (McCoy 
and Wu 1973, Frachebourg and Henkel 1991). 

Second, the one-particle spectrum of the continuum theory corresponding to the 
tiriiitiai pcnctii I M I I ~  UIUUCI CUIWI~W UL U C ~ C I X X ~ L C ,  uiamiw, ICLL- aiu ~ ~ g ~ m - ~ u u v ~ u g  
excitations with definite momenta. This degeneracy describes the fact that the con- 
formal symmetry is the direct product of hvo Virasoro algebras. It is at least partiaUy 
lifted when the non-periodic modulations, which break in particular translation in- 
variance, are turned on, in contradistinction to the cases mentioned above when just 
the conformal realization is changed. 

Third, the double degeneracy of the critical one-fermion spectrum of the perfect 
king model should be recovered in the thermodynamic limit, at least for the lowest 
momentum modes, even in the presence of the quasiperiodic modulation. We shall 
trace the levels which are the left-right partners in the perfect model. The analysis 
of these doublet splitting reveals that the degeneracy will in general not be restored 
in the upper part of the spectrum. The lifting of the degeneracy, induced by breaking 
translation invariance is reproduced by an approximate analytic treatment. A multi- 
fractal analysis will show a continuous range of local scaling, which were not present 
in the conformal description. It is interesting that a study of these level splitting, 
whose calculation is relatively easy, shows similar characteristics as the band structure 
investigations performed so far (Doria and Satija 1988, Benza and Callegaro 1990, 
You et a1 1991). 

In section 2 we recall the simplest version of the quasiperiodic quantum king 
chain (Doria and Satija 1988) which is to be investigated in the present paper. We 
expect, however, the conclusions of our study to remain valid for more general models 
with quasiperiodic modulations. We shall present and discuss the basic features of 
the numerically obtained spectra. 

In section 3, an approximate diagonalization scheme is described. The ideas 
underlying this approximation are analogous to the ones followed in calculating the 
effect of weak periodic potentiah on degenerate eiectronic ieveis (see e.g. A ~ i i ~ r ~ f t  
and Mermin 1976). Already the first two approximants give precise eigenvalues in a 
moderate neighbourhood of the perfect king model. This success allows us also to 
interpret the features of the eigenvectors in terms of our approximation. 

In section 4 three types of local scaling are analysed, which occur in the most 
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characteristic parts of the spectra. For individual levels the restoration of translational 
invariance and, in the lower part of the spectrum, that of conformal invariance, is 
demonstrated. 

The multifractal analysis of the left-right splitting is described in section 5. Finite- 
size effects and the dependence on the strength of the modulation are studied. We 
find characteristic differences between the multifractal spectra associated with the 
lower and upper ~~ part ~ of the one-fermion spectrum. Conclusions are given in section 6. 

2. The model and its one-fermion spectrum 

Consider a chain whose sites are lettered by either A or E .  The Fibonacci sequence 
SI is obtained recursively by composing words S,-l and via S, = Sl-lS,-z and 
So = B, S, = A. The length of the sequence is given by the Fibonacci numbers 

= &-l + 
The quantum Hamiltonian of the transverse Ising chain for a system of size 

with Fo = Fl = 1. Let L ( n )  denote the letter at the site n. 

N = F, is (for a review on the Hamiltonian limit, see Henkel 1990) 

N 

where 

The us are Pauli matrices and periodic boundaty conditions are used. The coupling 
T will be referred to as the 'modulation strength'. The critical point is, as found 
numerically by Doria and Satija (1988) and confirmed analytically by Benza (1989), 

"c \ = T - l l o =  (2.3) 

where U = liml+m F f / F I - ,  =(A+ 1)/2 is the golden mean. 
The application of the Jordan-Wigner transformation maps the model onto a 

quadratic fermion problem, with fermionic creation and annihilation operators c:, 
ci satisfying {c t , c , ]  = 6 i j .  The charge operator Q = 1/2[1-exp(-iC,c,+cn)] 
commutes with H and the spectrum of H can be classified into an even fermion 
number (Q = 0) and an odd fermion number (Q = 1) sector. The standard technique 
of Lieb et al (1961) reduces the eigenvalue problem of H to the diagonalization of 

M =  (2.4) 



5226 

The diagonalized Hamiltonian takes the form H = E, A,(q:q, - i), where the 
normalization of the A, is chosen to be 

M Henkel and A Patkh 

where { m k }  is the set of eigenvalues of M. We shall refer to the one-fermion 
energies A, as ‘levels’ for brevity. It can be shown by studying the dispersion relation 
near A = 0 (at the X = A, critical point) that this normalization corresponds to a 
choice of energy-momentum units such that the ‘speed of sound’ is unity (Ceccatto 
1989). This convention is going to be useful in connection with the discussion of 
conformal invariance (see section 4). 

We have considered the critical model with the following modulation strengths: 
T = 0.3,0.9, i.00i, i .0i and i.5. For finite iaiiices of sizes N = F4 = 5, .  . . , i v  = 
PI, = 2584, the exact finite-lattice spectra were obtained for both charge sectors. We 
now give several important observations as recognized from the visual inspection of 
the spectra. As an example, consider the T = 1.5 critical spectrum for a lattice with 
N = F17 = 2584 sites in the Q = 0 sector (figure 1). 

.. 

Flgurr 1. One-fermion energies A,  
versus their level number, for r = 1.5 

0 5w 1wo 15x 2000 25w in the sector Q = 0 and FIT = 2584 

/ 

Level number sites. 

(i) The dispersion curve for the critical T = 1 (perfect) quantum king chain is 

We shall label states by the quantum number 

2m i f k > O  

z m + ( 1 - 2 Q )  i f k < O  
n = {  (2.7) 

and refer to n as ‘level number’ and to m as paw nulnber’. From (2.6), A, is a 
non-decreasing function of n (or m), if r = 1. This still holds true for T # 1, which 
means that there are no level crossings which would invalidate the grouping of levels 
into pairs by (2.7), at least for the values of r considered here. 
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(ii) There are some intervals in the energy range which are left empty and others 
which are very densely filled. We shall refer to these as ‘gaps’ and ‘bands’ throughout 
this paper, although the one-fermion spectrum is discrete for finite N .  Comparison of 
figures 1 and 2 shows that the location and the width of the ‘gaps’ on the enera  scale 
are almost independent of the lattice size. The longest chain displays a much richer 
hierachy of ‘gaps’, apparently uniformly distributed in the appropriate A intervals. 
We also note that the relative location of the ‘gap’ openings in the sequence can be 
associated with the same value mlm,, (mm, = [ N / 2 ]  - l), and that they are 
located at those values of m which are determined by linear combinations of the 
lower Fibonacci numbers. The largest gaps occur at the relative positions F,-,/F, 
and Fi-2/&. 

2 0- 

1 5 -  

Ah 
1 0 -  

.__ 
I_ 

d- 
/ 

---- 
// 

ic 

We shall ask the following questions. Do the eigenvalue gaps scale with the system 
size? What happens to the density of levels near the gap edges? In what sense can 
one define ‘continuous spectra’ in different parts of the spectrum? 

(is) The approximate representation (2.6) is working particularly well in the lower 
anu a ” t  mear parr UI uit: qxcirum. ncrt: UIK wuiu cxpc~i  LIIB IIIPIUICW~LIUIL VI 

conformally invariant patterns to be confirmed by precise quantitative checks. 
(iv) On smaller lattices (figure Z), we recognize a doublet structure, at least in the 

lower part of the spectrum. We label the pairs by ( k ,  -k) (see above). The doublet 
splitting is much smaller than the gap between the subsequent pairs, although it is 
varying with k .  In the sequel, whenever referring to ‘doublets’ or ‘(level or doubler) 
splittings’, it will always be these doublets and their splitting which we have in mind. 
Those splittings whose label coincides with an odd Fibonacci number (or with an 
odd linear combination of some Fibonacci numbers) tend to become especially large. 
In figure 2, the largest splitting occur for the doublets labelled by #55 = Fs and 
#89 = Flo. Can one associate the observed doublets with the ( I C ,  -k) modes of the 
critical T = 1 king chain in the thermodynamic limit? If this is true in the lower part 
of the fermion spectrum, can we extend this interpretation for the doublets around 
F,-l and FI-?? 

In the next section, we construct a hierarchical approximation scheme using the 
hypothesis that the levels are identifiable as deformations of the critical P = 1 king 
modes (see (2.6)). We shall see that even for the largest gaps, this approximation 
works very well. 

. - 1  ~,.... I I .  -... -.~.. ^d .c. T, ... --- ..~~,_1 .L^ -....:c ^^.^_ ;-- ̂C  
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3. A hierarchical approximation scheme 

In this section we present a simple approximation scheme which allows, in spite of the 
apparent complexity of the problem, a precise representation of the numerical data. 
The main idea is to study the interaction between appropriately selected ( k , - k )  
pairs, generated by turning on the modulation in H. This amounts to diagonalization 
of M (2.4) in appropriately chosen subspaces. 

The last of the observation listed in section 2 suggests that the exact eigenvectors 
of the P = 1 (perfect) case 

M Henkel and A Pafkbs 

10~1 . . . .  

10-6- 
0 50 1W 150 MO 250 300 

Figure 3. Exact intra-doublet split- 
lings for N = 610 sites and r = 0.9 

Pair number in the sector Q = 0 

For this we analyse the off-diagonal matrix elements of the difference 6M := 
M(r) - M(‘=’) in the basis (3.1) (we hereafter always treat the sector Q = 0, unless 
otherwise stated) with N = Fl sites 
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3.1. Slandard fisl-order perturbation theov 

Consider first the standard degenerate perturbation theory of pairs (+k, -k). From 

one sees that the important quantity is (N = Fl) 

N 
1 ziqn-1) = - C f (n )e  

?L=l 
N (3.4) 

We now ask for which values of k r( k) takes its largest values. Using the property 

the following recursion relation is obtained: 

(k) rFn(IC) = r F c - , ( k )  + Ft-2 
e 2 i k F x - , r  

which can be rewritten in a matrix form 

(3.7) 

In order to have a finite matrix element in the limit F, - 00, the values of k should 
be chosen such that one (asymptotic) recursion step in (3.7) increases rpt-l(ic) by 
a factor of U. Since this is just the feature of the mapping generating the Fibonacci 
numbers the requirement for the recursion matrix in (3.7) amounts to 

The problem of selecting IC such that (3.8) holds can be solved (Aubry et a[ 1988, 
G a l e r  1991) by exploiting the asymptotic relationship between the Fibonacci num- 
bers: 

In order to write this in a geometrically transparent way, consider a sequence of 
vectors X = (F,,,, , F,) from a two-dimensional lattice. This sequence is generated 
by the Fibonacci mapping X,+, = FX,. The eigenvectors of F are 

(3.10) 
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with the eigenvalues U and -11~. In this basis, X is written as 

M Henkel and A Patkbs 

X n  = Xn,llell + X , , L ~ L  
1 

X,,II = (oFntl + F,) (3.11) 

1 
(-Fntl+ . cw Xnl, = 

The component X, vanishes exponentially under subsequent applications of T.  As 
a consequence one finds for the scalar product with an arbitraty vector K 

K .XI = KIIXl,lI + K,XI, ,  + KIIXl,II Y I i l l ~ F l  

where the asymptotic form of F, has been used. 

asymptotic statement is equivalent to 

1 - 0 0  (3.12) 

We now choose the vector K from the reciprocal lattice. Then the previous 

e x p ( i l i l l ~ F l )  + e x p ( i K . X ) = l  1 - 0 0 ,  (3.13) 

The smaller the IC, component of the reciprocal lattice vector, the faster is the 
convergence and consequently, the larger will be the corresponding amplitude of the 
Fourier transform. The k-values to be considered are restricted to the interval (0, T), 
The selection of those k-values for which the offdiagonal matrix element is large goes 
via 

(i) K, small 

(i i)  0 < 2 k  N Itll- < 2n 
(3.14) 

(strict equality might not be always achievable since k is also quantized). 

hierarchy for F I k / a  = 2n + 1: 
In the examples we describe below (N = F14, F17), one finds the following 

layer 1 Fl-,, FI-* 
layer2 F l - 4 , F l - z i F l - 6 , F ~ ~ l f ~ ~ - 6 r ~ ~ - F ~ - 4  (3.15) 

such that the largest maxima of r(k) occur for layer 1, the second largest for layer 2 
and so on. We remark that this geometric consideration has been extended by Gahler 
to higher-dimensional recursive structures as well (Gahler 1991). 

Equation (3.15) is valid if Fl is even. In this case, Fl-l and Fl-z are both odd 
and large gaps appear between the levels numbered by Fl-l and Fl-l  + 1 (F i -2  
and Fl-z + 1, respectively), which belong to the same pair. On the other hand, if 
Fl is odd, either FI- ,  or Fi-2 is even. For the even one, the gap appears between 
neighbouring pairs and the interaction between these two pairs must be taken into 
account. 
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In figure 4, the approximate doublet splittings are displayed as obtained numeri- 
cally for N = 6 1 0 , ~  = 0.9 from (3.3). The structure of the maxima and the average 
level of splittine is well reproduced, but the interesting fine structure of figure 3 
is &ng. In figure 5 we show the systematic change of the splitting pattern with 
increasing deviation of 'P from 1. Comparing figure 5(a)  with figure 4, we note that 
first-order perturbation theory works well for I' very close to unity. If lr - 11 gets 
larger, however, a new type of fine structure appears in the intra-doublet splittings 
which becomes more pronounced with growing 11' - 11. For large values of 11' - 11, 
the structure of the splittings changes completely. In figure 5(c), we observe a jump 
in the pattern around the pair number [Fl-z/2],  It is clear that these features are 
beyond the approximation treated so far. 

lo-'k I 

Flgure A Intra-doublet splitting for 
N = 610 sites and r = 0.9 in the 

0 50 100 150 200 250 3W sector Q = 0 as obtained from mst- 
order perturbation theow. 

10-6 1 0 - 5 L 1  
Fnir number 

3.2. The hierarchical exremion 

In section 3.1 it was shown that the lowest-order perturbative approximation works 
well in the immediate neighbourhood of the perfect system. For finite but moderate 
vaiues of j T  - il one has to turn to systematic improvements. The scheme we are 
going to describe is not a direct extension of the first-order perturbation theory of 
section 3.1, but involves a projection mechanism onto a conveniently chosen subspace 
on which 6M is diagonalized. 

We have seen that the largest elements of 6M occur at those k-values given 
by (3.15). The structure of 6M is such that the size of its elements only depends on 
the difference of the states in IC-space. Thus, if 2k, is a IC-value where the sum (3.4) 
takes one of its local maxima, then 6Mk,,. for the pairs (m is some integer) 

and 

[-k, k'] (3.17) 

has the same value. 
The largest off-diagonal matrix elements arise between those states whose level 

number differences are 2F,-, or 2Fl-2 and are thus given by layer 1 of (3.15). The 
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Poir number Par number 

Figure 5. Exact inea-doublet splitlings for 
N = 2584 Sire8 in rhe sec101 Q = 0 for 

2W 400 600 8W 1MM 1zW several values of r: (a)  r = 1.001, (b) r = 
0.9, and ( c )  r = 0.3. Poir number 

second approximation, to be described below, will take these couplings into account. 
The group of second largest matrix elements is obtained between states related by 
layer 2 in (3.15) and so on. From figure 4, interpreted in the context of first-order 
perturbation theory (see section 3.1) it is indeed apparent that for the states of layer 1, 
the gaps are the largest. The group of second largest gaps is seen to occur at the 
places indicated by layer 2 in (3.15). The thud layer of gaps in figure 4 seems to 
contain 16 entries. It becomes increasingly difficult to disentangle the layers belonging 
to lower grades of the hierarch . However, since the matrix elements in the third 
layer are of order of some 10- smaller than those in the first, we expect that the 
scheme will converge rapidly, at least when IT- - 11 Q 1. 

We now give the states taken into the account for the first and second approxi- 
mation in our hierarchical scheme. Consider the level structure in the neighbourhood 
of one of the largest gaps, e.g. F,-z, with a k-value k'. 

The f i s t  approximation, denoted by 2 x 2, for the two levels of a degenerate 
doublet near F,-z was obtained by diagonalizing separately 2 x 2 matrices coming 
from the pairs (we mume for convenience F, even): 

f 

(3.18) 2rr [k' = kF,-2 + --m, k3 = - 
Fl 

and 

[k' = -k', k4 = -k3] . (3.19) 
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These pairs have level numbers differences of 2Fl-,. In this way in the first approxi- 
mation all doublets of the pairs labelled hy ( k ’ ,  ICz) and ( k 3 ,  k 4 )  remain degenerate 
except the m = 0 doublets. 

The second approximation, to be denoted by 8 x 8, also includes in the eigenvalue 
problem the levels which have a level number difference of (3.18) and (3.19): 

and 

[ k 6  = - I C 5 ,  k8 = -k’] (3.21) 

and one has an 8 x 8 matrix formed from these four pairs. The results of the 
above projection are accurate to four or five digits and in figure 6 we show that 
this approximation correctly accounts for the fine structure of the splittings near the 
biggest gaps. 

lo-‘ 

I:’j 
1 

Figure 6. Comparison of the 8 x 8 
approximation (&iangles) and the ex- 
act result (squares) for the intra- 
doublet splittings for r = 0.9 and 
N = 610 sites in the Q = 0 sec- 

110 115 120 125 lor, in the neighbourhood of the gap 
at Fl_z  = F12 = 233. 

l o - ] b . . n 6 , -  , ;* j 
. 6 ’  

10-4 I .  

Poir number 

For the next approximation step two types of problems can be addressed: 
(i) The levels in the neighbourhood of the ‘strongest’ off-diagonal directions 

F,-2)  can be improved by including those states whose level number dif- 
ferences with I C ’ ,  . . . , k8 are given by layer 2 of (3.15). 

can he 
studied by replacing in (3.18) and (3.19) kF,-,  by some IC, with G belonging to this 
layer (Fl - -4 , .  . . , Fl - Fl-4). Then the states with a level number difference given by 
layer 1 are to be included and the resulting 12 x 12 matrix is to be diagonalized. 

These constructions can be continued to any degree of precision desired. 

(ii) The neighbourhood of a ‘second-order gap’ ( F l - 4 , .  . . , PI - 

3.3. Eigenvectors 

The wavefunctions of the near-edge levels in our approximation are finite linear 
combinations of extended Ising modes and thus are extended themselves. This result 
for the nature of the near-edge exact eigenvectors of (2.4) has been tested numerically. 
We find that for T = 0.9 all near-edge eigenvectors are extended. The states forming 
the gap precisely at &-, are characterized by 141 = on a dense subset of 
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the lattice points, where 
around 
of the doublets close to the gap can be described (for F, >> 1) by 

M Henkel and A PatMS 

is some ‘average value’ of l+nl. The variations of +,, 
show a self-similar pattern of dips of decreasing depth. The eigenvectors 

(Y is in the context of our approximation the phase of the off-diagonal matrix ele- 
ment). This behaviour is the result of superposing high-frequency periodic approxi- 
man& to quasiperiodic functions with nearly equal wavenumbers. The ‘carrier wave’ 
formed from our lowest-order approximate eigenvectors becomes in the 1 -3 CC limit 
a true quasiperiodic function, which carries a periodic modulation. The wavelength 
of this modulation is F,/2m,  where m labels the distance of the doublets to the gap. 
This regularity can be observed to be satisfied by the exact eigenvectors near the gap 
edges. 

The picture is completely different for T = 0.3. There we obselve an abrupt 
change in the splitting pattern just at Fl-2 (see figure S(c)). The wavefunctions of 
the levels above the gap appear to be critical (neither extended nor localized). The 
proposed perturbative treatment is no longer applicable. 

The success of our scheme in the quantitative description of the broad neighbour- 
hood of the largest gaps is due to the strong interactions of the modes (k, + k’) 
and -(ko - k’) of the perfect Ising model, induced hy the breakdown of transla- 
tional invariance. The modulated quantum king chain might turn out to be a generic 
example of the physical mechanism for the gap formation in the spectra of general 
non-periodic systems. 

The importance of the intra-doublet splittings in the proposed approximation 
scheme should convince the reader about the interest of analysing the intervals de- 
fined by the Fplittings with a multifractal approach, which will be presented in sec- 
tion 5. 

4. Typical local scaling in the spectra 

In the previous sections we have given a simple, but accurate interpretation of how 
gaps open between would-be degenerate left-right partners as a consequence of 
quasiperiodic modulation. Here we study the finite-size scaling behaviour of the 
levels, using the exact eigenvalues of H on finite lattices. 

4.1. Gaps and near-gap levels 

One finds gaps at some allowed combinations of Fibonacci numbers @ = 
~ , c p F l - ,  < F,, A given gap is studied by keeping the c p  fixed while increas- 
ing l (compare figures 1 and 2). The local scaling index of a gap is defined 
as 

lim [A(@ + 1) - A ( @ ) ]  - Fl-””. ( 4 4  
I-CU 

In table 1 the l-dependence of the logarithms of the left-hand side of (4.1) is given 
for the gaps at level number F,-,,p = 1 , 2 , ,  . . . This particular set covers at least 
three orders of magnitude and can therefore be considered to be representative 
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of the hierarchy of gaps. A non-unifom convergence to a constant width can be 
observed. The gaps corresponding to even values of FI-, form a separate sequence, 
converging slowly, while the sequence formed for the odd F,-p converges rapidly. 
Both subsequences have the same limit. This is so since for F,-p odd, the gaps 
are intradoublet gaps, while for F+ even, they occur between doublets. This 
observation represents an extra argument for selecting the intra-doublet splittings as 
the natural mechanism for the formation of gaps. For an accurate extrapolation 
towards F, --.) CO, one should discard the width estimates from F,- ,  even. One finds 
up to p U 10 that all gaps converge to some finite width, which implies 

(4.2) 

The constant value of the corresponding left-right splittings is a clear signal for the 
breakdown of translational invariance even in the critical point. 

Table 1. Finite-lattice data for the logarithm of the intra-doublet gap opening at F I - ~  
for various system sizes N ,  for r = 0.9 and Q = 0 and FI = F,r = 2564. The entries 
labelled by ' are those mrresponding to inter-doublet splittings and should be discarded 
when extrapolating towards N - M. 

8 -2803 -2.735 
13 -1.334. -2.739 -3.777 
21 -2.819 -1.408. -3.777 -4693 
34 -2820 -2.750 -1.782' -4.597 -5.575 

55 -2470. -2.751 -3.796 -2.212. -5.568 -6.517 
89 -2822 -2.470. -3.798 -4.614 -2.612. -6.510 -7.481 

144 -2822 -2.751 -3,095. -4.617 -5.587 -3.144. -7.473 -8,440 
233 -2.795. -2.751 -3.799 -3.591' -5.590 -6.528 -3.620' -8.433 -9.403 
377 -2822 -2.731. -3.799 -4.617 -4.092' -6.531 -7.492 -4.099. -9.395 -10.365 
610 -2.822 -2.752 -3.720, -4.617 -5.590 -4.578. -7.494 -8.451 -4.579. -10.357 
987 -2.821' -2.752 -3.799 -4.457. -5.590 -6.531 -5.060' -8.454 -9.414 -5.060. 

1597 -2.822 -2.750, -3.799 -4.617 -5.229. -6.531 -7.495 -5.541. -9.416 -10.375 
2584 -2.822 -2.752 -3.794' -4.617 -5.590 -5.875' -7.495 -8.454 -6.022. -10.378 

Using standard convergence-improving algorithms (Henkel and Schiitz 1988) we 
find that the levels A( F,-* + 1) and A( F,-,) separately converge to finite limits as 
1 + M. Next, we have studied the finite-size scaling of the states whose label has a 
F e d  distance from the edge states: 

From the analysis, the data corresponding to even vaiues of 4-, were discarded. 
Bhle 2 shows the results of the extrapolation for p = 1,2 and q = 1,2,3,4, for 
r = 0.9 and Q = 0. First, the extrapolated values of pedge were found for all eight 
states and turn out to be 

(4.4) 
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implying that the density of states behaves in a similar way as in the van Hove singu- 
larities. The amplitudes A, were obtained using the individual exponents of table 2 
and are listed in the same table as well. We see that for the pairs of states ( q  = 1,2) 
and (q = 3,4) the amplitudes agree within 5%. This is equivalent to the restoration 
of translational invariance near the gap edges! The quadratic relationship between the 
amplitudes of the subsequent doublets means that the continuum spectrum building 
up near the gap edges in the 1 -t m !hi! will have a quadmic d$pesb.n. 

M Henkel and A Patkbs 

(4.5) 

The equations (4.2), (4.4), (4.5) check numerically the exact results found with the 
method of Limit cycles (Bema and Callegaro 1990). 

Table 2. Estimates for the exponent pedgc and the amplitude A, for the convergence 
of the ches t  states (labelled by q,  (4.3)) to the edge the gap opening at FI-~. For 
the entry marked by ' the finite-size data did not mnverge. 7he intrinsic extrapolation 
error for the A, is ai least 5 units in the last given digits. Tlis dws not yet mntain 
possible systematic errors arising from the imprecise knowledge of pedgc. 

@edge A ,  
9 P = l  p = 2  p = l  p = 2  

1 1.95 + 0.05 2W + 0.02 -* 383 
2 1.99 + 0.03 1.99 + 0.02 196 400 

3 2.00 + 0.02 2.00 f 0.1 760 1598 

4 2.00 + 0.03 2.00 f 0.1 802 1659 

4.2. Conformal scaling near A = 0 
For the A, - 0 edge of the one-particle spectrum, the results of the conformally 
invariant perfect ising modei can be recovered, independent of the vaiue of T (f i r j .  
For a conformally invariant system, the differences of the eigenvalues Ei of H are 
related to the scaling dimensions zi via (Cardy 1984) 

Fl Ei - E, = -2; 
21r 

For the Ising model, all eigenvalues Ei can be written as a sum over some A,. This 
fixes the local exponent pconf: 

Consequently, one considers the scaling amplitudes 

A ,  := - A , .  4 
211 

For the perfect (T = 1) Ising model, the A, are given by (2.6). The f i i t  eight A ,  are 
given in table 3 for both Q = 0 and Q = 1 and were obtained by extrapolating finite- 
lattice data from F3 = 3 to F,, = 2584 towards F, -+ m, using the EST extrapolation 
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algorithm (Henkel and Schiitz 1988). We find that for all values of T ,  the result for 
the perfect Ising model is recovered. For T = 0.9, this was also checked for the 
levels 13, 14 and 21, 22. This means that the lower levels of the quantum king model 
on a Fibonacci chain can be associated with definite momenta, implying restoration 
of translation invariance, and they do form equidistant towers in agreement with 
conformal invariance. The values of the lowest dimensions, using (4.6), allow the 
recovey of the 2D Ising exponents = 2 - l / v  = 1 and zU = p /v  = 1/8. While 
the result for zc is in agreement with earlier conclusions (Doria and Satija 1988, 
Bema 1989, Igl6i 1988), the confirmation for zu has not been carried out. 

Table 3. Finite-size estimates for the eight lowest critical one-fermion energies A k  of 
the quantum Ising chain on the F i b ”  lattice for several values of r and in both 
charge sectors. me estimated enor is expected to be of the order 3 x me exact 
result for r = 1 is taken from (26). 

Padge A, 

P =LO r = 0.3 r = 0.9 r = 1.5 

Q = 0 112 0.50000 0.50000 0.50000 
112 0.49999 0.5W00 0.50000 
312 1.49997 1.50000 1.50000 
312 1.49997 1.50000 1.50000 
512 250001 2,50000 2.49999 
512 249999 2,50000 2.50001 
712 3.50001 3.49999 3.50001 
112 3.50000 3.50000 3.50001 

1 1.00000 1.OM00 1.00000 
1 1.00001 1.00000 1.00000 
2 1.99999 2.00000 2.00000 
2 200000 1.99959 1.99999 
3 3.00002 3.00000 2.99944 
3 3.00002 3.00000 3.0WOO 
4 3.99980 4.00000 3.99998 

Q = 1  0 0.0 0.0 0.0 

5. Multifractal scaling of the lefi-right splittiogs 

The local scaling exponents found in section 4, pgaP = 0, pedge - - 29 cL,,,f = 1 
are just some examples of sets of one-fermion levels obeying different finite-size 
scaling behaviours. Since the left-right splitting respond in a characteristic way to 
the quasiperiodic modulation, it is of interest to investigate the multifractal scaling 
of these. Consider the ordered ascending sequence of left-right splitting (Q = 0 
sector): 

we = A ( Z s ) - A ( Z s - l )  s = 1  ,...,[:I. (5.1) 
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We choose to give equal weight to all pairs. 

shall obtain the multifractal spectrum f (  a) 

M Hen?& and A Patkbs 

Following Halsey et al (1986). we define a ‘partition function’, from which we 

By the convention proposed by Halsey et al (1986), one can fix Z , ( q , r )  = 1. This 
yields a relation between q and T .  Assuming the local scaling 

ws - F;” (5.3) 

the sum in (5.2) is dominated in the F, - m limit by the region where p r  - q(r)  is 
stationary: 

The standard analysis is based on the inverse function of (5.4) 

(5.4) 

(5.5) 

By the typical local scaling seen previously we expect the support of f ( a )  to include 
the points a = 0.5,1, CO. A few peculiar values of f ( a )  have a simple interpretation. 
For example, the maximum value of f is the fractal dimension Do of the support, 
while the value D, := f(al) = a, is referred to as information dimension. 

In figure 7, the f ( a )  spectrum of the doublet splittings is shown in the sectors 
Q = 0 and Q = 1 for T = 0.9 on the chain with N = F,, = 2584 sites. The 
behaviour of the two curves on the segment 0.5 < a < 1 is Q-independent, the 
maxima are reached close to a = 1. The contribution of the slowly decaying splitting 
with a > 1 (the gaps are included here) is larger for the Q = 0 sector than for Q = 1. 
This should be a fmite-size effect, however. 

I 

U 

Flpre 7. Comparison of the mul- 
tifractal distribulion function f(o) 
between the hvo s5cIors Q = 0 , l  
for r = 0.9 and N = 25M sites. 
( Q = O :  e, Q = 1 :  +). 
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The ?dependence of the multifractal spectrum is displayed in figure 8. While P 

approaches the perfect value P = 1, the maximal value of f( a), f( eo) decreases and 
a. shifts towards 4. This is in agreement with the full restoration of translational 
invariance in the P -t 1 limit, since then all splittings are vanishing exactly. The 
largest lattice data hint towards a faster scaling (ao < 1) than shown by the levels 
themselves (a = 1). 
This tendency for the restoration of translational invariance is not uniformly 

present in the spectrum. Following Bema and Callegaro (1990) we performed the 
multifractal analysis on the lower part of the spectrum (1 < s < (F,-,/2) in (5.2)) 
and on its upper part ( (F, - , /2 )  + 1 < s < (F,/2) in (5.2)) separately. We have 
found that f ( a )  calculated from the lower part for N = 2584 sites and T = 0.9 
looks quite similar to the full spectrum at P = 1.01. implying that in the lower part 
the effect of the quasiperiodic modulation is weaker. In a careful study, Godrkche 
and Luck (1990) have adressed the possibility that finite-size effects might produce 
a spurious multifractal spectrum. As a criterion for the absence of multifractality in 
the large-N limit, they proposed that the curvature of the function f ( a )  close to its 
maximum should diverge logarithmically with the lattice size. 

We find that the finite-size dependence of f ( a )  is very weak in the segment 
0.5 < a < 1, as illustrated for the upper spectrum in figure 9. In particular, we do 
not see a divergence of the curvature. In the region a > 1 however, f( a) depends 
strongly on the system size and also on the part of the one-fermion spectrum included 
into the analysis. The difference between the f( a) curves calculated either from the 
full spectrum or from its upper part appears to be a finite-size effect since the curves 
widen substantially with increasing system size and this change happens in a correlated 
way. 

Eventually for F, - 00 both kinds of curves might become constant for 
a > a, Y 1. This would mean that the finite left-right gaps (whose existence was 
confirmed in section 4.1) would form a finite-dimensional subset. If true, this would 
be a novel quantitative characterization of the breakdown of translational invariance. 
This situation is analogous to the observation of Batrouni er a1 (1988) made in a 
study of random resistor networks. On this basis we conjecture the presence of a 
non-analyticity in f ( a )  at some a,. This phenomenon is sometimes referred to as 
‘spectral phase transition’ (see Bema and Callegaro 1990). 
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Figure 9. Finite-size effects in 
the distribution function f(o), for 
r = 0.9 and Q = 0 for the u p  
per part of the one-fermion spec. 
trum. The system sizes are N = 
2584: 0 ,  1597: +, 9 8 7  17, 6 1 0  x. 

6. Conclusions 

In this paper we have proposed a unified framework for the investigation of magnetic 
phase transitions in quasiperiodic systems. The study of the discrete energy levels 
of the critical quantum Ising model both in the even and in the odd sectors has 
revealed a characteristic pattern for the breakdown of translational invariance on 
finite approximants to quasiperiodic systems. The restoration of this symmetry was 
demonstrated both at the bottom of the spectrum and also at the edges of the largest 
gaps. A simple perturbative scheme was shown to describe quantitatively the most 
important features of the level structure. The multifractal analysis of the intra-doublet 
splittings yielded information on the distribution of scaling exponents. 

Ou; qualitative understanding is satisfactory in a moderate neighbourhood of the 
periodic model. The study of the I' = 0.3 case shows qualitatively new features, in 
particular for the higher excitations in the spectrum. For values of I' close to zero, 
the model trivially decomposes into a large number of two- and three-sites systems. 
This tendencj which charaterizes the I' = 0 case is already apparent, for I' = 0.3, for 
those states whose label is larger than F,-2. The transition between the two parts of 
the level spectrum is clearly seen in the eigenvectors of the quantum Hamiltonian. 

Acknowledgments 

It is a pleasure to thank F Gahler for his help in analysing the Fourier spectrum of 
self-similar sequences and to thank M Droz and G Gyorgyi for heiphi discussions. 
This work was partially supported by the Swiss National Science Foundation in the 
framework of the Programme of Cooperation with Eastern European Countries. 

References 

Ashcroft N W and Mermin N D 1976 Solid Store Physics (Philandelphia, P A  Saunders) p 1.52 
Aubry S, Godrhche C and Luck J-M 1988 1. Sfor. Phys. 51 1033 
Batrouni G G, Hansen A and Roux S 1988 Phys. Rn: A 38 3820 
Benza V G 1989 Ewophys. Leu. 8 321 
Bcnm V G and Callegaro V 1990 1. Phys. A: Moth. Gen. 23 LA41 
Ben= V 0, Koiar M and Ali M K 1990 Phys RN. B 41 9578 



Critical quantum Ising model on a Fibonacci chain 5241 

Cardy J L 1984 J. Phys A: Moth Gm 16 U85 
Ceccatto H A 1989 Z. Phys. B 75 253 
Doria M M and Satija I 1988 Phys, RN. Len 60 444 
Frachebnurg Land Henkel M 1991 1. P h p  A: Marh Gm 24 5121 
Gshler F 1991 to be published 
Godrkhe C and Luck J M 1990 1. Php A: Math Gm U 3769 
Halsey T C. Jensen M H. Kadanoff L E P m c c i a  I and Shraiman B I 1986 Phys RN. A 33 1141 
HPEke! M 1990 FinifC size scar& rmd N&a! sindarin.!! G,!S&kdCa! Sp?E!: ed Y ?nivma!! (singapre: 

World Scientific) ch Vlll p 353 
Henkel M and Park& A 1987 1. Phys. A: Math Gm 20 2199 
Hcnkel M and Schutz G 1988 I. Phys A: Math Gar 21 2617 
Ig16i F 1988 1. Phys A: MofA Gm 21 L911 
Kohmoto M, Sutherland B and lhng C 1987 Phys Rw. B 35 1020 
t ieb E, Schulu T and Matris D 1961 Ann Phys. 16 407 
Luck J-M and Nieuwenhuizen 'I% M 1986 Eumphys Lm 2 257 
McCoy B M and WU T T 1973 7?1e Two-dimensional Isin8 Model (Cambridge, MA: Harvard University 

Satija I 1990 Phys RN. B 41 7235 
Satija I and Dona M M 1988 Phys. Rn! B 38 5174 
Satija I and Dona M M 1989 Phys. Rev B 39 9137 
You J Q, Zeng  X. Xie T and Yan J R 1991 Phys Rn! B 44 713 

PreSS) 


